Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466184

RESUMO

Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.


Assuntos
Comportamento Exploratório , Membrana Nuclear , Animais , Camundongos , Encéfalo , Laminas , Mamíferos , Proteínas de Membrana/genética
2.
J Comp Neurol ; 528(13): 2161-2173, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037591

RESUMO

Smad anchor for receptor activation (SARA, zfyve9) has been classically observed in early endosomes of different cells types where it regulates vesicular transport of proteins and membrane components. Very few other members of the zinc finger FYVE domain-containing family (zfyve) have different functions other than controlling membrane trafficking. By analyzing SARA localization throughout mouse embryonic brain development, we detected that besides the endosomal localization it also targets neuronal nuclei, specifically of the cortical layers V/VI. These findings were confirmed in human brain organoids. When evaluating neuronal cell lines, we found that SARA accumulates in nuclei of PC-12 cells, but not Neuro-2a, highlighting its specificity. SARA functions as a specific marker of the deep cortical layers until the first postnatal week. This temporal regulation corresponds with the final phases of neuron differentiation, such as soma ventral translocation and axonal targeting. In sum, here we report that SARA localization during brain development is temporarily regulated, and layer specific. This defined pattern helps in the identification of early born cortical neurons. We further show that other zfyve family members (FYCO1, WDFY3, Hrs) also distribute to nuclei of different cells in the brain cortex, which raises the possibility that this might be an extended feature within the protein family.


Assuntos
Núcleo Celular/química , Proteínas de Ligação ao GTP/análise , Neocórtex/química , Neocórtex/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...